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Abstract  

In this paper the physical situation of three collinear, axisymmetric masses is studied 
within the framework of Einstein's general theory of relativity. A solution is found, and 
the feasNility of the existence of coupled negative-positive masses is demonstrated in 
direct correspondence to such a feas~ility in Newtonian theory. 

1. Introduction 

In 1936 Silberstein claimed that  he had found a solution to Einstein's 
gravitational field equations that represented two isolated, axisymmetric masses 
and that,  contrary to "man 's  most ancient, primitive experience",  they did not  
gravitate towards each other but remained at rest. In the same journal ,  Einstein 
and Rosen ( t 936 )  contradicted Silberstein's claim and showed that ,  indeed, 
the solution did represent two isolated mass centers but  they were separated 
by  a strut sufficient to hold the two masses apart and thus produce a static 
situation. In fact Silberstein had reproduced Curzon's (1924) solut ion to the 
same physical problem. 

It occurred to the author that  a similar static situation could be achieved if  
the strut were replaced by  a body  that  had the power to repel the two mass 
centers in such a way as to equally balance their mutual  gravitational at traction.  
Accordingly,  following Bondi 's  (1957) argument,  the intermediary body  was 
chosen to be one o f  negative mass; clearly, in the Newtonian picture three such 
suitably chosen masses would lie in a straight line without  any relative motion.  

in Sec. 2 the problem of  looking for such a three-center solution is defined 
and solved, the results being in agreement with Newtonian phenomenological  
feasibility. In Sec. 3 the author looks to a special case, and in Sec. 4 a dis- 
cussion of  the results is given. 
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2. The  Problem 

2.1 Def in i t ion  

Given the axisymmetric line element in cylindrical polar coordinates (p, z, 
q~, t) 

ds 2 = e2Vc2 d t  2 - e -2v [e2X(dp z + dz  z)  + p 2 d~  z ] (2.1) 

it is easily shown that substitution into Einstein's vacuum field equations results 
in four partial differential equations in the two parameters v(p, z)  and X(p, z), 
namely, 

V2v = 0 (2.2) 

ap PL\ap! - \ a q  j 
OX Ov Ov 
- - =  2 p - - - -  (2.4) 
~z ~p 8z 

+az-w+\aol  az] =0 (2.5) 

The problem thus reduces to one where, given the well-known solutions to 
Eq. (2.2), we substitute into Eqs. (2.3) and (2.4) and integrate. As a check, any 
solution so obtained must also satisfy Eq. (2.5). 

The solution to the metric (2.1) that represents a single isolated axisymmetric 
body is given as I 

and 

v = - G m / e 2 r ,  r 2 = /7 2 + Z 2 (2.6) 

?t = - G 2 m 2  p 2/2c4r  4 (2.7) 

m being the mass of the body located at the origin, G the gravitational constant, 
and c the speed of light in vacuo. In this paper we consider a solution of Eq. 
(2.2) in the form 

3 

v = -  ~ Liri -1 (2.8) 
i = 1  

where 

L i = Grni/c 2 

=p2 re 2 + (z + ~i)  2 
(2.9) 
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2.2 Integranbn o f  Eqs. (2.3) and (2.4) 

Given Eq. (2.8), then clearly 

3u 3 
Op P ~ Liri-3 

i=1 

3v 3 
- - =  ~ Li(z + oq)ri -3 
3z i=l 
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(2.10) 

and 

3X 3 
L i t / [ / ) 2  __ (2 + OZi)(Z + O~j)] r i - 3 r / - 3  

3 

5=1 
L i  2 [/9 2 - (z + ozi) 2 ] ri  -6  

+p 
3 

i , j = l  
LiLj [p2 _ (z + oq)(z + aj)] ri-3r] -3 

_~_X= 3 
~Z 2t)2 ~ L i 2 ( z  + °~i)ri-6 

i=1 

(2.11) 

3 
+2p 2 ~ LiLj[(z+~i)+(z+~i)lri-3r] -3 (2.12) 

L j = I  

After some manipulation it is a relatively straightforward matter to show that 
integration of Eq. (2.11) with respect to p yields 

3 
x = - ½  E 5 - 2  -4 p L~ r~ 

i=1 

3 
--½ ~ LiLj[(rirj) -1 -- (~i--~])-2(rir]-I +ri-lrj)l +A(z) 

i , j = l  
e .  j (2 .13~  \ - -  - - - j  

Differentiating Eq. (2.13) with respect to z and comparing the result with Eq, 
(2.12) yields 

A(z) = const (2.14) 

The constant (2.14) is chosen so as to make the metric Minkowskian at infinity, 
thus 

3 
A -- - E &Lj(~e - ~j)-2 

t, l= l  
i 4 =j 

(2.15) 
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The complete expression for 3, is then 
3 

X =--½ ~ PZLiZri-4 
i=1 

3 
1 - -~  ~ L iL][ ( r i r ] )  -1 - ( a  i - ot])-2(rir] -1 + r i - l r ] )  + 2(c¢i - 0~/) -2 ]  

i , ] = l  
i , j  (2.16) 

2.3 The Relationship between L 1, L2, and L 3 

tn order that this solution represent three isolated masses lying on the z axis, 
not only must ~ and X and their first derivatives be continuous, but  X must 
vanish everywhere for p = 0, except at the mass points. This latter condition 
is necessary in order that  the infinitesimal circle in the plane z = const, t = const 
with center p = 0 will have the ratio of  circumference to diameter equal to 
7r z. By considering Eq. (2.16) and the fact that 

rir ] sin Oii= P l(~i - ~])1 (2.17) 

where 06 is the angle subtended by r i and rj, it is easily seen that 

3 3 
X = --½ E P2LiZri-4 + .~ LiLj(cos Oq - 1)(cq - eq) -2 (2.18) 

i=1 t , l = l  

In order that X(p = 0, z) = 0 then 

3 
L iZ j (o t  i - o~i)-2(cos Oij - 1)[o= 0 = 0 (2 .19)  

i , j = l  
i v~j 

Clearly at all points on the z axis and outside the grouping of the three mass 
centers Oii= 0, and Eq. (2.19) is satisfied. 

However, to satisfy F~. (2.19) for all points within the grouping of  the 
three mass centers, we must impose the further condition 

L-i=(-)  i+j(Oti-Otk)2 i , j , k =  l , 2 , 3 ; i g = j @ k ~ i  (2.20) 
/;j (~j - ~ k )  2' 

Equation (2.20) is just the condition for the equilibrium of  two positive (or 
negative) masses held apart by the counterbalancing repulsion of an intermediary 
negative (or positive) mass. 

Equations (2.8), (2.16), and (2.20) thus complete the solution. 

3. A Special Case 

If we now look to the situation of  two equal masses m situated at z -+ a and 
a mass of  -rn/4 situated at the origin, then in Newtonian theory and in general 
relativity they will all lie at rest in equilibrium. 
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In general relativity the metric is then given by Eq. (2.1), where 

where 

and 

0 2 L 2 [ 1  +__1 + 1 ] L 2 [4a 2 a 2 a 2 

X -  2 ~ r ~  rz 4 1 6 r 4 ] - 4 7  ~r2  r lr  r2r 

_ ( r l  + r  2 r r 1 r r 2 + 2 )  J (3.1) 
\ r  2 r I r I r r 2 r 

rt2 = p2 + (z + a) z , r22 =/92 + (z - a) 2 , r 2 =/92 + Z 2 

L = Grnc -2 

If  we consider the limit, as a ~ 0, of  both  v and X, we find that after a repeated 
application of L'Hbpital 's  rule 

v = - L ' r  -1, X = -p2L '2 /2r4  (3.2) 

where 

L' = 7L/4 

This is the single-center solution for a mass equal to the algebraic sum of  the 
masses m, m, and - m / 4 ,  in agreement with Eqs. (2.6) and (2.7). 

4. Discussion 

While it has long been known that Newtonian theory admits the possibility 
of  negative mass and also the combination of  negative and positive mass, it was 
not clear that  the latter situation could find its parallel in Einstein's general 
theory of  relativity. As Bondi notes (1957), the integration that gives the 
Schwarzschitd solution produces a constant that is identified with the mass of  
an isolated spherically symmetric particle. The sign of the mass can be chosen 
as positive or negative so as to correlate with position or negative mass in 
Newtonian theory. This paper, however, presents for the first time a complete 
solution involving masses of  both  signs in general relativity in direct correspon- 
dence with the Newtonian picture. 

Consistency with previous results is also demonstrated by  considering the 
limit, as the separation parameter goes to zero, of  a three-center situation that 
is symmetric about the origin. 

It should also be noted that  this work will quite easily extend to n bodies 
lying on the z axis such that n is an odd number and the masses are alternately 
positive and negative, being of  suitable size so as to lie in equilibrium. 
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